If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x=10
We move all terms to the left:
3x^2-2x-(10)=0
a = 3; b = -2; c = -10;
Δ = b2-4ac
Δ = -22-4·3·(-10)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{31}}{2*3}=\frac{2-2\sqrt{31}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{31}}{2*3}=\frac{2+2\sqrt{31}}{6} $
| 3t-t-7=t+7= | | 2(-4-x)=3(2+2x)-1 | | 2x/x-x+3/3x=-1/3 | | (1/2x)+(x-25)+(1/2x)+(x-15)+100=540 | | 6-4x=x-11 | | (3^3-3*9)+(7-2^2)b=24b | | 5(-1/5)-3y=-15 | | ?/3x24=16 | | 0.8x-6.2=0.2 | | -5(3m=6)=-3(4m-2) | | c2-20c-276=0 | | (0.5-0.75)^2x-6.9=9.9 | | 18+6/7k=-23 | | (1/3x)+(x-10)+(x-20)+40=360 | | -16x+13=20x-23 | | -8(-3p-5)+6(p+4)=34 | | -16x+13+20x-23=180 | | 6/7k=-41 | | C^2-20c-276=0 | | 9x-(3x-9)=1+5x | | 5(2x-4)+7x=0 | | 4-3y=(y+4) | | -16x+3-20x+23=180 | | 45+x=3.5x | | 3a=2a+7=12 | | 2x⁴-x²-15=0 | | 12x-(6x-12)=4+5x | | 0.5r=2(0.75r-1)=0.25r=6 | | 3(v=6)=42 | | 3w+2=36 | | 2/3*z=8 | | w2-7w=18 |